Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

نویسندگان

  • Nicholas Clinton
  • Le Yu
  • Haohuan Fu
  • Conghui He
  • Peng Gong
چکیده

Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST) at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI), MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products

Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop pheno...

متن کامل

Evaluation of land degradation trend using satellite imagery and climatic data (Case study: Fars province)

Introduction: Climate change and human activities have a direct impact on land vegetation. Decreased rainfall and increased temperature are among the climate change factors leading to significant changes in water resources and energy balance in affected areas. On the other hand, human activities such as growing population, overgrazing and land use changes that make change in land conditions, al...

متن کامل

Modeling of spatio-temporal of albedo over Iran

The aim of this study is modeling spatiotemporal variations of albedo. This study was conducted using simultaneous effects of several components, such as wetness of surface layer of soil, cloudiness, topography and vegetation density (NDVI), using MEERA2 model with a resolution of 50 in 50 km during 2000-2010 in Iran. The results of spatial analysis of albedo values in Iran showed that the high...

متن کامل

Spatio-temporal and Ecological Analysis of Brucellosis in North of Iran

Epidemic diseases are a public health concern that has many economic costs and health problems. The geographical distribution of these diseases is a spatial and temporal process. By understanding the process and identifying the factors that affect it, we can take an effective step in preventing and treating these diseases. Brucellosis is one of the most important zoonotic diseases in Iran. To b...

متن کامل

On the Suitability of MODIS Time Series Metrics to Map Vegetation Types in Dry Savanna Ecosystems: A Case Study in the Kalahari of NE Namibia

The characterization and evaluation of the recent status of biodiversity in Southern Africa’s Savannas is a major prerequisite for suitable and sustainable land management and conservation purposes. This paper presents an integrated concept for vegetation type mapping in a dry savanna ecosystem based on local scale in-situ botanical survey data with high resolution (Landsat) and coarse resoluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014